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Abstract
We show that the spin polarization of electron density in non-magnetic
degenerate semiconductors can achieve 100%. The effect of 100% spin
accumulation does not require a half-metallic ferromagnetic contact and can be
realized in ferromagnet–semiconductor FM–n+–n junctions even at moderate
spin selectivity of the FM–n+ contact when the electrons with spin ‘up’ are
extracted from n semiconductor through the heavily doped n+ layer into the
ferromagnet and the electrons with spin ‘down’ are accumulated near the n+–n
interface. We derived a general equation relating spin polarization of the current
to that of the electron density in non-magnetic semiconductors. We found that
the effect of complete spin polarization is achieved near the n+–n interface when
the concentration of the spin ‘up’ electrons tends to zero in this region while the
diffusion current of these electrons remains finite.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The field of semiconductor electronics is based exclusively on the manipulation of charge.
The phenomenal progress in increasing circuit performance by reducing device dimensions at
a rate commonly referred to as that of Moore’s law is likely to be curtailed by practical and
fundamental limits by the next decade [1]. Consequently, there is keen interest in exploring
new ideas and paradigms for future technologies. Since an electron bears spin as well as charge,
combining carrier spin as a new degree of freedom with the established bandgap engineering
of modern devices offers exciting opportunities for new functionality and performance. This
emerging field of semiconductor physics is referred to as semiconductor spintronics [2–4].
Materials research and the physics of new spin-dependent phenomena play key roles in this
rapidly growing field as researchers work to develop new magnetic materials and structures,
and try to understand the basic issues of spin injection and scattering at heterointerfaces.
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One may distinguish two broad regimes envisaged for spin-dependent device operation:
the first in which the net spin polarization is the key parameter (i.e. there are more spins oriented
in a given direction than in the opposite direction in either current or number density), and a
second in which spin phase coherence is important. This article will focus on the former [5],
while the latter is relevant to other avenues such as the development of spin-based quantum
computation, which relies on controlled entanglement of wavefunctions [6].

One of the earliest proposals for a semiconductor spintronic device was for a spin polarized
field effect transistor (spin-FET) [7], in which the source and drain contacts are ferromagnetic
materials intended to inject and detect spin polarized electrons transported in a high mobility
channel. The conductance of the FET would depend on electron spin orientation in the channel,
which would be controlled by the gate voltage relative to the magnetization of the drain contact,
producing a spin-based mode of operation. If the magnetization of the source and drain are
independently controlled using techniques developed for magnetic memory, such a device
offers nonvolatile and reprogrammable operation with spin or magnetization as a virtual fourth
terminal. This and other device concepts, including spin-dependent resonant tunnelling diodes
(spin-RTDs) [8–17], gated spin coherent devices [18, 19], spin polarized light emitting diodes
(spin-LEDs) [20] and tunnel magnetoresistive devices [21–23] have stimulated tremendous
interest in this rapidly growing field.

There are four essential requirements for implementing a semiconductor spintronics
technology: (i) efficient electrical injection of spin polarized carriers into the semiconductor,
(ii) adequate spin diffusion lengths and lifetimes for transport within the device, (iii) effective
control and manipulation of the spin system, (iv) efficient detection of the spin system
to determine the output. The injection of spin polarized electrons into non-magnetic
semiconductors (NS) is of particular interest because of the relatively large spin coherence
lifetime, τs , and the promise for applications in both ultrafast low power electronic
devices [3, 4, 7, 24–27] and in quantum information processing (QIP) [4, 28–31].

Very encouraging progress has been made in the areas related to the manipulation and
control of the spin system in non-magnetic semiconductors. Spin diffusion lengths of many
microns [32, 33] and spin lifetimes >100 ns [33, 34] have been reported in optically pumped
GaAs, for example. A number of successful methods have been demonstrated for manipulating
and detecting [35–38] the state of the spin system. However, an efficient and practical means of
electrical spin injection has heretofore been unavailable, and this lack has been a critical issue
severely hampering progress in this field.

Electrical spin injection requires a contact material and a corresponding interface which
facilitate the transport of spin polarized carriers into the semiconductor. Ferromagnetic metals
offer most of the properties desired for a practical spin injecting contact material: a source
of electrons rather than holes, high Curie temperatures, low coercive fields, and a well
developed materials technology due to decades of investment largely by the recording industry.
Metallization is a standard process in any semiconductor device fabrication line, so that the
use of a ferromagnetic metallization could easily be incorporated into existing processing
schedules.

A number of groups have attempted to inject spin polarized carriers from a ferromagnetic
metal contact into a semiconductor and reported measured effects of the order of 0.1–1%,
with an estimate of actual spin polarization in the semiconductor extracted from a particular
model [39–41]. These experiments measured a change in resistance or potential, which some
argue may be compromised by contributions from anisotropic magnetoresistance or a local Hall
effect [42–44].

Recent model calculations by several groups [45–48] have indicated that the large
difference in conductivity between a metal and semiconductor severely inhibits spin injection.
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Figure 1. Schematic view of the proposed FM–n+–n heterostructure designed to create 100% spin
polarized non-equilibrium electron gas.

In an overly simplistic picture, the ability of the semiconductor to accept carriers is independent
of spin, and much less than that of the metal to deliver them. Consequently, equal numbers
of spin up and spin down electrons are injected regardless of the metal initial polarization,
resulting in essentially zero spin polarization in the semiconductor. In the diffusive transport
regime (where all existing devices operate), successful spin injection occurs only for two
conditions: either the conductivities of the FM contact material and semiconductor are closely
matched, or the contact is 100% polarized. If neither condition is satisfied, the spin polarization
in the semiconductor is very low (<1%). No FM metal meets either of these criteria. Half-
metallic materials offer 100% spin polarization in principle [49, 50] although defects such as
antisites or interface structure rapidly suppress this value [51].

It was suggested that this obstacle of conductivity mismatch could be circumvented if
the interface resistance dominates, e.g. by insertion of a tunnel barrier between the metal and
semiconductor [52]. The physics was first elucidated theoretically by Rashba [52], who noted
that such an approach supported a difference in chemical potential between the spin up and
spin down bands at the interface, thereby enabling the use of FM metals as spin injecting
contacts. Various oxides are commonly used as tunnel barriers. Magnetic metal/Al2O3/metal
structures have been extensively studied, since they form the basis for a tunnelling spectroscopy
used to determine the metal spin polarization [53], and for TMR devices being developed for
nonvolatile memory [22].

However, for a metal contact on a semiconductor, the band bending accompanying
Schottky barrier formation provides a very natural potential barrier, as shown in figure 1. For
moderately doped semiconductors (n ∼ 1016–1018 cm−3), the depletion width is hundreds
of ångströms [54] and very little electron current flows from the metal under reverse bias,
characteristic of a rectifying contact. However, this width may be readily controlled by an
appropriate doping profile since heavily doping the surface of the semiconductor during MBE
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growth reduces the depletion width to tens of ångströms [55] so that tunnelling from the metal
into the semiconductor becomes a highly probable process. This approach avoids the use of a
discrete barrier layer and the accompanying problems with pinholes, and Schottky contacts are
already routine ingredients in semiconductor technology.

This tailored Schottky tunnel barrier approach was successfully demonstrated by Hanbicki
et al using an epitaxial Fe film on an AlGaAs/GaAs QW spin light emitting diode (spin-LED)
heterostructure [56, 57] and electron spin polarizations of 32% were achieved in the GaAs
QW. The LED structures were grown using an AlGaAs contact layer doping profile designed
to enhance tunnelling. Electroluminescence (EL) data from surface emitting devices were
obtained and analysed as a function of magnetic field. The field was necessary to align the Fe
magnetization (carrier spins) along the surface normal (Faraday geometry) so that the familiar
quantum selection rules can be applied. The spectra were dominated by the QW heavy hole
exciton, with a linewidth of 5 meV. At zero field, the right P+ and left P− circularly polarized
EL components were equal, as expected, since the easy magnetization axis of the Fe film lies in
the plane. As the Fe magnetization was rotated out of the plane, the P+ component dominated
and a pronounced difference in intensities was observed in the raw data, signalling successful
electrical spin injection. The circular polarization directly tracks the out-of-plane magnetization
of the Fe film obtained by independent magnetometry measurements. We emphasize that 32%
is the spin polarization of the number rather than the current density, which is always the case
for experiments on the optical detection of the spin injection.

The experiments by Hanbicki et al [56, 57] were in many respects inspired by Rashba’s
theory of spin injection [52], which is based on the diffusion approximation, and assumes a
spin-selective tunnel contact between the FM and semiconductor. More precisely, the tunnel
contact has different conductances for up and down spins and spin relaxation at the interface is
neglected. The results highlight two requirements for efficient spin injection: (i) the mesoscopic
contact (interface) resistance must dominate, and (ii) the contact (interface) must be spin
selective. Rashba’s theory is limited to the ohmic regime, while in reality large biases often
lead to nonlinear current–voltage characteristics. Nevertheless, the theory provides simple
and physically sound guidance on how to increase spin injection efficiencies, for example,
by increasing the spin selectivity of the contact resistance.

In principle, any tunnel contact between a FM material and a non-magnetic material will
be spin selective, because the spin polarization of the density of states leads to spin polarization
of the tunnel current. While the density of states is not explicitly present in the Landauer
formula, which is commonly used in microscopic transport calculations, it can be shown
that the transmission coefficient is proportional to the product of the densities of states in
the emitter and collector [58]. Therefore, one obvious way to improve spin injection is to
use highly spin polarized, or even half-metallic, ferromagnetic emitters. Most ferromagnetic
materials, however, are not half-metallic, and therefore alternative strategies are important.
Moreover, if one’s goal is to create a maximal spin imbalance of the electron density (spin
accumulation) in a non-magnetic semiconductor, in the same way as is done in the optical
pumping experiments [33, 34], the spin injection may not be the most efficient method for
achieving this goal. Indeed, the spin injection is enabled by the tunnelling of the electrons from
FM into NS through a spin-selective barrier. But the tunnelling is a symmetric process and,
consequently, the tunnelling of the electrons from the semiconductor into the ferromagnet will
also produce spin accumulation in NS. This process is called spin extraction [59–62]. In this
article we will demonstrate that the spin accumulation may reach 100% when the spins are
extracted from NS into FM through a specially tailored interface. Surprisingly, this complete
spin extraction does not require a half-metallic FM contact and can be achieved at rather modest
spin selectivities of the contact. Therefore, some other properties of the ferromagnetic contacts,
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such as robustness of the ferromagnetism, quality of the FM/NS interface, can be taken into
consideration in designing the most efficient and stable magnetic heterostructures.

For any spin-dependent quantity, e.g. current density jσ or number density nσ , we will
introduce their symmetric, e.g. j = j↑+ j↓ (total current), and antisymmetric, e.g. � j = j↑− j↓
(spin current), combinations. The main characteristics of the spin injection or spin extraction
are the spin polarizations of the electron (i.e. number) density P = (n↑ − n↓)/n = �n/n and
the current density γ = ( j↑ − j↓)/j = � j/j . The value of γ determines a magnetoresistance
ratio and performance of spin-valve devices [7, 52, 47, 27, 26]. The value of P determines the
polarization of the recombination radiation measured in most of the experiments on optical
detection of spin injection [56, 57, 63]. Moreover, a high value of P is crucial for QIP
devices [4, 29, 30]. It has been implied in most of the previous theoretical works on spin
injection [64–66, 52, 47, 48, 67, 68, 61, 60] that P cannot exceed γ . This assumption is
consistent with existing observations in which different magnetic materials such as magnetic
semiconductors or ferromagnetic metals (FM) have been used as injectors of spins into
semiconductors [3, 4].

The major effort has been concentrated on finding the means to increase the spin injection
coefficient, i.e. the value of γ at an interface between a ferromagnet and a semiconductor. The
main reason for this is that the spin injection coefficient defines a magnetoresistance ratio for
spin-valve devices [52, 47]. Furthermore, it has been implied in previous theoretical works on
spin injection [64–66, 52, 47, 48, 67, 68, 61, 60] that P cannot exceed γ . This assumption is
consistent with existing observations in which different magnetic materials such as magnetic
semiconductors, half-metallic ferromagnets, and ferromagnetic metals (FM) have been used as
spin injectors [3, 4] in reverse-biased junctions. That is why the value of P which is measured
in the experiments on optical detection of the spin injection [56, 57, 63] has been taken as a
lower bound of the spin injection coefficient.

It follows from a formal consideration by Yu and Flatte [48, 67] that P can, in principle,
exceed γ in non-degenerate semiconductors when electron spins are extracted from NS into
FM (reverse bias). However, more detailed studies by Osipov and Bratkovsky [27, 26], taking
into account tunnelling through a Schottky barrier in simple FM–NS junctions, revealed that
P < γ due to a feedback formed during the tunnelling process. The condition P < γ holds for
both non-degenerate and degenerate semiconductors and for both reverse- and forward-biased
simple FM–NS junctions [60–62].

In this paper we demonstrate a possibility for achieving complete spin polarization P ∼ 1
of electrons in degenerate semiconductors near forward-biased FM–S junctions with moderate
spin selectivities of the FM contacts. The effect is based on spin extraction and nonlinear
dependence of the non-equilibrium spin density on the electric field. A non-equilibrium
electron gas becomes completely spin polarized when a quasi-Fermi level ζσ for one type of
carrier (e.g. σ = +1(↑)) reaches the bottom of the conduction band Ec near a specially tailored
interface. This opens up new exciting opportunities because the work for many spintronic
devices would drastically depend on (potentially high) values of P . It would be highly desirable
to develop capabilities of creating a highly spin polarized electron gas with P ∼ 1 in a channel
of a field effect transistor for Datta–Das-type devices [7], and also for the purposes of quantum
information processing, for quantum memories based on nuclear spin polarization, for potential
devices based on the spin Hall effect, and for many other applications.

Unlike in previous works where simple FM–NS junctions were studied, in this article
we consider a band-engineered FM–n+–n structure containing a thin superheavily doped n+
layer and a degenerate semiconductor n region (figure 1). The effect in question is based on
spin extraction and nonlinear dependence of the non-equilibrium spin density on the electric
field. A non-equilibrium electron gas becomes completely spin polarized when a quasi-Fermi
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level for one type of carrier (e.g. ζ↑) reaches the bottom of the conduction band Ec near the
n+–n interface. The spin extraction from NS as predicted by Zutic et al [59] for forward-
biased p–n junctions containing a magnetic semiconductor was studied in detail for FM–NS
junctions [27, 26], and was experimentally found in forward-biased MnAs/GaAs Schottky
junctions [69]. However, both the predicted and observed values of the spin polarization P
were rather small.

2. Spin polarized transport in non-magnetic semiconductors

We start from a consideration of a non-magnetic semiconductor with non-equilibrium spin
imbalance described by a quasi-Fermi distribution:

nσ (x) =
∫

N(ε − Ec) f

[
ε − ζσ (x) − eϕ(x)

kT

]
dε. (1)

Here N(ε − Ec) is the density of states, f (x) = (exp(x) + 1)−1 is the Fermi function, e is the
magnitude of the elementary charge, and φ(x) is the electrostatic potential. The current density
jσ can be expressed as

jσ = eμnσ E + eDσ

∂nσ

∂x
= μnσ

∂ζσ

∂x
. (2)

Here E = −∂ϕ/∂x is the electric field, μ = eτ coll/m is the mobility, τ coll is the collision
(momentum relaxation) time, m is the effective mass and Dσ is the diffusion coefficient. The
second part of equation (2) is based on the generalized Einstein relations [70]

μ = eDσ

∂ ln(nσ )

∂ζσ

, (3)

which ensure that charge and spin currents vanish in equilibrium (ζ = const, �ζ = 0).
Le us express the spin-dependent current and number densities through their spin

polarizations:

nσ = 1
2 n(1 + σ P) (4)

jσ = 1
2 j (1 + σγ ), (5)

where σ = ±1. Substituting equations (4) and (5) in equation (2) we obtain

γ = � j

j
= ∂�ζ/∂x + P∂ζ/∂x

∂ζ/∂x + P∂�ζ/∂x
. (6)

Here ζ = ζ↑ + ζ↓ and �ζ = ζ↑ − ζ↓.
Let us make use of the condition

j = j↑ + j↓ = μn

2
(∂ζ/∂x + P∂�ζ/∂x) = const. (7)

Using equation (2) and taking into account the steady-state condition j = const we can
relate spin polarizations γ and P:

γ = P + (1 − P2)
μn

2 j

∂�ζ

∂x
. (8)

The first term in this equation can be interpreted as a spin drift term while the second one can
be interpreted as a spin diffusion term. We will always assume that the FM metal is on the
left-hand side and the semiconductor is on the right-hand side of the interface x = 0. We will
also assign directions ‘up’ and ‘down’ to the majority and minority spins in the ferromagnet
respectively. This convention ensures that γ is always positive and does not depend on the
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direction of the current. On the other hand the spin polarization of the electron density P does
depend on the sign of j . Namely, under the reverse bias (spin injection—electrons are moving
from FM to S) j < 0 and P > 0, i.e. the majority spins are accumulating in the semiconductor
near the interface while under the forward bias (spin extraction—electrons are moving from
S to FM) those are the minority spins, i.e. j > 0 and P < 0. The magnitude of the spin
polarization |P|, however, is always decaying away from the interface.

At this point it is convenient to introduce a local electroneutrality approximation, n = n0,
where n0 is the equilibrium electron density, and simplify equation (8):

γ = P + en0 D(P)

j

dP

dx
, (9)

where we have introduced a bi-spin diffusion coefficient:

D(P) = μ

2e
(1 − P2)

d�ζ(n0, P)

dP
. (10)

The steady-state continuity equations for spin-dependent currents in a homogeneous, non-
magnetic semiconductor read

d j↑
dx

= e

2τs

(
n↑ − n↓

)
d j↓
dx

= e

2τs

(
n↓ − n↑

)
,

(11)

where τs is a spin-flip time. Let us consider the case of a degenerate semiconductor at low
temperatures. Then

�ζ = mv2
F

2

[
(1 + P)2/3 − (1 − P)2/3

]
, (12)

where vF = (h̄/m)(3π2n0)
1/3 is the equilibrium Fermi velocity. Substituting equation (12) in

equation (10) we obtain

D(P) = v2
Fτcoll

3
D̃(P), (13)

where

D̃(P) = 1
2 (1 − P2)2/3

[
(1 + P)1/3 + (1 − P)1/3

]
. (14)

Now we introduce the spin diffusion length L2
s = (v2

Fτcollτs)/3 and dimensionless variables of
length ξ = x/Ls and current ε = j/js, where js = en0 Ls/τs . In terms of these variables
equations (11) and (9), read

ε
dγ

dξ
= P, (15)

γ = P + D̃(P)

ε

dP

dξ
. (16)

Substitution of equation (16) in equation (15) leads to a non-linear drift–diffusion equation:

d

dξ

(
D̃(P)

dP

dξ

)
+ ε

dP

dξ
− P = 0. (17)

Instead of dealing with the second-order non-linear equation (17) we can derive a first-order
equation relating γ and P:

ε2 dγ

dP
= D̃(P)

P

γ − P
. (18)
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Figure 2. Solutions of equation (18) for different ε.

As ξ → ∞, P → 0 and dP/dξ → −λP , where λ = √
ε2/4 + 1 + ε/2. The parameter ε is

positive for spin extraction and negative for spin injection. Using this asymptotic behaviour of
P(ξ) and equation (16) one can obtain a boundary condition for equation (18):

lim
P→0

γ /P = 1 − λ/ε. (19)

Solution of equation (18) with this boundary condition gives us a universal function γ (P, ε)

which uniquely relates spin polarizations of the current and number densities at any spatial
point of a semi-infinite quasi-neutral degenerate semiconductor or metal for any finite value of
ε. Numerical solutions of equation (18) in the domain 0 � |P| � 1 are shown in figure 2
for different values of ε. The parameter λ−1 is a dimensionless ‘upstream’ (ε > 0, spin
extraction) or ‘downstream’ (ε < 0, spin injection) spin penetration length [48, 67]. As the
current increases this length either tends to infinity, for spin injection, or to zero, for spin
extraction.

This happens because the spin diffusion current is always directed away from the interface
while the electric field and the drift current are either parallel (spin injection) or antiparallel
(spin extraction) to it. As a result, the spin accumulation layer is either expanded away from
the interface under spin injection or compressed towards the interface under spin extraction.

The physical situation corresponding to the spin extraction is shown in figure 4. In
the forward-biased structure unpolarized electrons drift from the bulk of NS to the contact.
Because of the spin selectivity of the contact the electrons with spin σ = ↑ (up electrons)
are extracted from NS, i.e. δn↑ = (n↑ − n0/2) < 0, and electrons with spin σ = ↓ (down
electrons) are accumulated, i.e. δn↓ = (n↓ − n0/2) > 0, near the contact. Here n0, n↑
and n↓ are the equilibrium electron density in NS and densities of up and down electrons,
respectively, at the boundary between the n+-S layer and highly resistant NS region (x = w in
figure 4(a)). The quantity

∣∣δn↑
∣∣ increases with the electric field, E . In sufficiently strong

fields, the drift efficiently compresses the spin polarized electrons to the boundary. As a
result, the spin penetration length decreases with the current (cf white and dark curves in
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Figure 3. Spatial distribution of P(ξ) (equation (17)).

figure 4(a)). Note that due to δn↓ = −δn↑, the diffusion flow of up electrons is directed
along the electron drift while the diffusion flow of down electrons is in the opposite direction;
figure 4(a). The superlinear increase of the spin diffusion flows with the current can be
compensated only by an increase of the spin density n↓ up to n0 and a decrease of n↑ down
to zero. In other words, the spin polarization of the electrons in NS near the FM–n+-S contact
|Pw| = |δn↑ − δn↓|/n0 = 2|δn↑|/n0 can reach 100% when the current is sufficiently large.

As follows from equation (19) γ /P → 1 as ε → −∞ and γ /P → 0 as ε → ∞.
The solutions with γ < 1 and |P| = 1 do not exist for ε < 0 but are possible for positive
ε � εc = 0.56 (see figure 2). Therefore, the spin extraction in forward-biased FM–S junctions
provides an opportunity to create a 100% spin polarized, non-equilibrium electron gas in a non-
magnetic semiconductor near the FM–S interface. Whether or not such an opportunity can be
realized depends on a particular physical system with specific boundary conditions. The goal
of this article is to demonstrate that such systems are feasible and technologically sound.

Knowing γ (P) we can easily find solutions of equation (17), P(ξ) ≡ Pξ , by simple
integration:

ξ − w/Ls =
∫ Pξ

Pw

D̃(P)

ε(γ (P) − P)
dP. (20)

Some solutions of equation (17) are shown in figure 3. If function P(ξ) reaches 1 at the
interface it becomes singular, |P| = 1 − C(ε)ξ 3/5, where C(ε) = 1.145 + 0.549ε according
to our numerical analysis. The spin polarization of the current density can be calculated as

γ = 3

5

C(ε)5/3

ε
− 1. (21)

It follows from equation (21) that |P| reaches 1 when γ < 1 provided that j > 0.56 js.
One can see from figure 2 that the value of |P| = 1 can be achieved at rather small γ if the
current is sufficiently large.

3. Boundary conditions

Let us consider the FM–n+–n heterostructure (figure 1) based on GaAs. The thickness w of the
n+ layer with electron concentration ∼1019 cm−3 is about 10 nm and the electron concentration

9



J. Phys.: Condens. Matter 19 (2007) 315205 A G Petukhov et al

Figure 4. (a) Spatial distribution of spin-dependent non-equilibrium carrier densities in a
non-magnetic semiconductor near a forward-biased FM–NS Schottky junction (spin extraction).
(b) Corresponding band diagram in equilibrium (dashed lines) and under the bias (solid lines).

n0 in the n-S region is in the range of 1017–3 × 1017 cm−3. We demonstrate that a 100%
polarized spin accumulation layer is formed near the n+–n interface x = w when the forward
current density reaches a critical value. The spin-dependent current across the FM–n+ interface
(x = 0) can be described using a generalized Landauer formula [71]:

jσ (0) = e

4π2h

∫ [
f (E − ζσ ) − f (E − Fσ )

]
Tσ (E, �k‖, eV ) d�k‖ dE . (22)

Here ζσ and Fσ are the spin-dependent quasi-Fermi levels in n+ and FM layers, respectively.
We use the fact that the splitting of the quasi-Fermi levels in the superheavily doped n+ layer
is small compared to the Fermi energy E+

F in this region, i.e. �ζ 
 E+
F and �ζ ∝ P . We

consider low temperatures and neglect splitting of the quasi-Fermi levels in the FM metal. Also
we use the local electroneutrality condition and assume that the Fermi level of the metal F = 0.
Within this approximation ζσ = eV + σ�ζ/2, where σ = ±1, and equation (22) reads

jσ (0) = j (0)
σ (V ) + 1

2σ�σ (V )�ζ(0), (23)

where

j (0)
σ (V ) = e

4π2h

∫ eV

max{0,eV−E+
F }

Tσ (E, �k‖, eV ) d�k‖ dE (24)

�σ (V ) = e

4π2h

∫ eV

max{0,eV−E+
F }

Tσ (eV , �k‖, eV ) d�k‖. (25)

Taking into account that �ζ ∝ P 
 1 in the n+ layer we use the standard approximation in
which �ζ in this region satisfies a linear equation similar to equation (17) with D̃ = 1 and
j = 0 [64, 48, 67, 26]. Solving this equation we can express γ (0) and �ζ(0) through γ (w)

and �ζ(w) by means of the following connection formulae:

10
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(
�ζ(0)/2ejrc

βγ (0)

)
=

(
cosh α − sinh α

− sinh α cosh α

) (
�ζ(w)/2ejrc

βγ (w)

)
, (26)

where α = w/L N , and L N is the spin diffusion length in n+ semiconductor.
Combining equations (23) and (26) we obtain the spin polarization γ on the n+ side of

interface x = w:

γ (w) = 1

cosh α + β sinh α

[
γc + j (0)

j
(�c − γc)

]
+ 1 + β−1 tanh α

1 + β tanh α
· �ζ(w)

2ejrc
, (27)

where �c = � j (0)/j (0), γc = ��/�, rc = (�↑ + �↓)/4�↑�↓, β = L N ρN /rc, and ρN is
the resistivity of the n+ semiconductor. The equation for the current density across the junction
reads

j = j (0)(V )
1 − �cγc

1 − γ (0)γc
. (28)

We will assume that the resistivity of the n+ region is tuned in such a way that β ∼
1. Also the transmission coefficient of an FM–n+ junction can be represented as Tσ =
Aσ f (�k‖, E) [62], where Aσ is determined by the density of states of electrons with spin σ

in FM and weakly depends on E and �k‖. This allows us to take Aσ out of the integrals in
equations (24) and (25) and obtain compact expressions for the spin extraction coefficient γ (w)

and current density j (V ):

γ (w) = j (0)(V )

j

(
1 + �ζ(w)

2e

d ln j (0)(V )

dV

)
(29)

j = j (0)(V )

(
1 + γc

�ζ(w)

2e

d ln j (0)(V )

dV

)
(30)

where γc = ��/� is the spin selectivity of the contact [52], � = �↑ + �↓, �� = �↑ − �↓,
and j (0) = j (0)

↑ + j (0)
↓ . Using equation (12) and matching quasi-Fermi levels at the interface

x = w we obtain that in equations (29) and (30),

�ζ(w) = EF
[
(1 + Pw)2/3 − (1 − Pw)2/3

]
, (31)

where Pw is the spin polarization of the electron density in the n-S region at x = w. Finally,
we use the continuity of γ and match equation (29) with the solution of equation (18) in the
n-S region. As a result we obtain spin polarization Pw , current density j , and spin extraction
coefficient γ (w) as functions of V . A typical dependence of Pw on j/js is shown in figure 5.

The critical current Jc = Sjc, where S is the contact area, and voltage Vc needed to achieve
|Pw| = 1 are determined by matching γ given by equations (29) and (21). The values of Jc

and Vc required to completely spin polarize electrons of the density n0 in n-GaAs near the
n+−n interface are shown in figure 6. We used a cubic approximation for j (0)(V ) which is
typical for tunnel contacts [72] since this approximation is well suited for Fe/GaAs and Fe/Si
tunnel junctions studied experimentally in [57, 73]. The function J (0)(V ) = Sj (0)(V ) with
S = 100 μm2 is shown in the inset to figure 6. This function corresponds to a triangular
barrier of height 0.63 eV and the effective width of 1.38 nm. We also used Ls = L N = 1 μm,
τs = 10−9 s, and w = 10–30 nm.

Once the dependences γ (P) and P(ξ) ≡ Pξ are known one can recover a spatial
dependence of any relevant physical quantity. In particular, the spatial dependence of the quasi-
Fermi levels ζσ is of interest:

ζ↑ = 1

3
EF

∫ Pξ

Pw

[γ (P) − P][1 + γ (P)]
(1 + P)D̃(P)

+ ζ↑(w) (32)

ζ↓ = 1

3
EF

∫ Pξ

Pw

[γ (P) − P][1 − γ (P)]
(1 − P)D̃(P)

+ ζ↓(w). (33)

11
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Figure 6. Critical currents and voltages.

The dependences of ζ↑(ξ) and ζ↓(ξ) are shown in figure 7 along with the electrostatic potential
ϕ. The latter quantity displays a discontinuity which was first discussed in [74] (see also [52]).
One can see that ζ↓(ξ) is a smooth function of ξ while the divergence of the first derivative of
ζ↑(ξ) is notable.

We emphasize the crucial role of the n+ layer in the proposed FM–n+–n structure. The
presence of the n+ layer allows us to fabricate a very thin tunnel barrier which significantly
reduces critical currents and voltages due to its low contact resistance. Moreover, the sharp
concentration drop between the n+ and n regions enables a dramatic change in the spin
polarization of the n region while the n+ region is only weakly perturbed. We notice that
the transport across the n+–n interface is diffusive. At the same time the concentration and
the diffusion coefficient for the electrons with spin ‘up’ goes to zero. However, the spatial
derivative of the concentration diverges and the diffusive current remains finite. It can be seen

12
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Figure 7. Calculated quasi-Fermi levels ζσ and electrostatic potential ϕ.

also from the divergence of the first derivative of the quasi-Fermi level ζ↑ for the majority
carriers near the interface (see figure 7) and equation (2). The effect of 100% spin accumulation
cannot be realized in simple FM–n-S structures where a feedback occurs in the process of spin-
dependent tunnelling [60–62].

Finally we would like to highlight some limitations of the theoretical approach presented
here. First of all, our theory, which is based on the consideration of two non-equilibrium
ensembles of the up and down electrons, becomes invalid when n↑(w) → 0. Our approach
is justified only when the time of electron–electron collisions within each of these systems
is much less than τs . Second, at large currents j > jc the theory breaks down because the
absolute value of the spin polarization, Pw , at the interface cannot exceed 1. The value of the
spin polarization can be stabilized near |Pw| ∼ 1 only if the total electron density n = n↑ + n↓
exceeds its equilibrium value, n0. Therefore, the condition of local electroneutrality will be
violated and a space charge must accumulate near x = w (see figure 1). This charge will
change the electric field E(x) and the total electron density in the vicinity of x = w. The drift–
diffusion equations and Poisson’s equation have to be solved self-consistently in this case.
This regime must be investigated separately, which is beyond the scope of this paper. Our
preliminary calculations show that, as expected, the characteristic scale of the non-uniform
field region is determined by a relatively short screening length and the value of |Pw| in the
degenerate non-magnetic semiconductor remains very close to 1 near x = w at j � jc.

4. Conclusions

In conclusion, we emphasize that we have demonstrated the possibility of achieving 100%
spin polarization in NS via electrical spin extraction, using FM–n+–n structures with moderate
spin selectivity. The highly spin polarized electrons, according to the results of [75, 76],
can be efficiently utilized to polarize nuclear spins in semiconductors. They can also be
used to spin polarize electrons on impurity centres or in quantum dots located near the n+–n
interface. These effects are important for spin-based QIP [4, 28–30], including single-electron
spin measurements [31] and quantum memory applications [29, 30]. The FM–n+–n structures
considered can be used as highly efficient spin polarizers or spin filters in a majority of the spin

13
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devices proposed to date [3, 4, 7, 24–27]. The effect of 100% spin polarization can be probed
by means of the recently developed spin transport imaging technique [77].
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Appendix. Boundary conditions in the linear response case

It is instructive to see how the formalism of section 3 reproduces the results of the linear
response theory of [52]. For the sake of simplicity let us consider a two-layer FM–NS structure
with the interface between FM and NS at x = 0. Rashba’s boundary conditions [52] can be
expressed as

� j (0) = γcrc + γFrF

rc + rF
j + �ζ(0)

2e(rc + rF)
. (A.1)

Here � j (0) = j↑(0)− j↓(0) is the spin current density at the interface; rc = (�↑+�↓)/4�↑�↓
and rF = LF(σ↑ + σ↓)/4σ↑σ↓ are effective resistances of the interface and diffusion region in
the ferromagnet respectively; γc = (�↑ − �↓)/(�↑ + �↓) and γF = (σ↑ − σ↓)/(σ↑ + σ↓) are
corresponding spin polarizations; and �ζ(0) is the splitting of the semiconductor quasi-Fermi
levels at the interface given by equation (12) with P = P0. Here P0 is the spin polarization of
the electron density in NS at the interface x = 0. Introducing γ (0) = � j (0)/j we can rewrite
equation (A.1) as

γ (0) = γ0 + 3

4

ε1

ε

[
(1 + P0)

2/3 − (1 − P0)
2/3

]
. (A.2)

Here

γ0 = γcrc + γFrF

rc + rF
(A.3)

and

ε1 = 1

3

mv2
F

ejs(rc + rF)
= rs

rc + rF
, (A.4)

where rs = Ls/σs is the effective resistance of the semiconductor spin diffusion region, and
the conductivity σs = e2n0τcoll/m.

In the limit of small currents (small ε), P = P0 exp(−ξ), and equation (16) yields

γ (0) = −P0/ε. (A.5)

On the other hand, we obtain from equation (A.2)

γ = γ0 + ε1

ε
P0. (A.6)

This, in turn, yields

P0 = − ε

ε1 + 1
γ0 (A.7)

and

γ (0) = γ0

ε1 + 1
= γcrc + γFrF

rc + rF + rs
. (A.8)

This formula coincides with the linear response result of [52] for the spin injection coefficient.
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If we consider a three-layer system of figure 1 the parameters in equation (A.1) will be
renormalized but the mathematical structure of the matching conditions will remain the same.
Using connection formulae similar to equation (26) we obtain

js(w) = 1

cosh α + λ sinh α

γcrc + γFrF

rF + rc
j + λ−1 sinh α + cosh α

cosh α + λ sinh α

�ζ(w)

2(rc + rF)
. (A.9)

Here λ = rN /(rF + rc), rN = L N /σN , α = w/L N . The quantities w, σN , and L N are the
thickness, conductivity and spin diffusion length of the n+ region respectively. Assuming that
α 
 1 we further obtain that γ (w) � γ (0), �ζ(w) � �ζ(0), and consequently P0 = Pw ,
i.e. the spin polarizations of the current and electron densities are completely transferred from
the FM–n+ interface x = 0 to the n+–n interface x = w. In this case we can simplify
equation (A.9) as

� j (w) = (1 − λw/L N )γc j + (1 + λ−1w/L N )�ζ(w)/2rc (A.10)

As previously, we consider the structures with λ ∼ 1. In this case equations (A.10) and (A.1)
are identical.
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